
Idea Behind the Dogbone

� Only one linac per turn instead of two, but pass
through twice

� Half the linac for a given number of turns, or

� Combine two linacs into one long linac
� Low energy turn-arounds minimum length
� 420◦ per pass
� Compare to 360◦ arc per pass, but length from

high energy
� Easier switchyard!!!

� Optimum some compromise between these
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Cost Optimization

� Design specs
� Output of Study I “preaccelerator” at 3 GeV

� RLA to 20 GeV

� Design methodology
� Semi-automated longitudinal design

� Start with ellipse freom preaccelerator

� Minimize energy spread

� Barely fit into bucket

� Phase rotate rapidly from incoming ellipse to
“matched” ellipse

� Optimize cost as a function of number of linac passes
� Costs based on FNAL study

� Linac: 38 per GeV
� Arc

➣ Proportional to length (or, equivalently,
degree-GeV)

➣ Proportional to energy spread
➣ 0.18 per half arc per GeV per percent

� For comparison, RLA1 plus RLA2 in Study I
were 500 units.
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Results

� Optimum costs
� Racetrack: 6 turns, 231 units

� Dogbone: 7 linac passes, 205 units; 11% savings

� Note: racetrack for 4 turns: 246 units; 7%
premium

� Cost savings mostly in arcs
� Dogbone: 16% more angle

� Dogbone: slightly larger energy spreads

� Dogbone: average length cut roughly in half due
to short arcs

� Motto: No savings if don’t take shortcuts

� Cavaets
� Storage ring cost: energy spread

� Dogbone: ±457 MeV
� Racetrack: ±322 MeV

� Increased arc costs associated with reverse bend

� Beamline crossings
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FFAG Recirculators
� A couple of arc designs on the table

� Smaller energy range: factor of 2-3
� Isochronous and non-isochronous

� Problem is with longitudinal dynamics

� Getting phase right:
� Prefer isochronous
� Arc not perfectly isochronous

� Limits number of turns before walk off crest
� Shift phase of stored energy: mild frequency

shift (few part 10−4)
� No synchrotron osillations: beam loading gives

energy drift
� Two nearby frequencies: ride slope of beat wave

� Non-isochronous
� Need significant phase shifting (frequency shift:

couple 10−3 to couple 10−2)

� Proposed solution for frequency shift:
� Store energy in SC storage cavities
� Switch rapidly to NC accelerating cavities

� Shift frequency of NC cavities until matches SC
cavity, energy transfers

� Ferrite in NC cavity to continue frequency shift
� Less worry with energy loss in ferrite
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